首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   24篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   10篇
  2016年   4篇
  2015年   17篇
  2014年   19篇
  2013年   15篇
  2012年   19篇
  2011年   20篇
  2010年   16篇
  2009年   20篇
  2008年   17篇
  2007年   20篇
  2006年   33篇
  2005年   15篇
  2004年   16篇
  2003年   14篇
  2002年   10篇
  2001年   11篇
  2000年   6篇
  1999年   11篇
  1998年   8篇
  1997年   9篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1975年   2篇
  1974年   3篇
  1971年   1篇
  1969年   1篇
  1960年   1篇
  1951年   1篇
  1940年   1篇
排序方式: 共有383条查询结果,搜索用时 15 毫秒
61.
62.
Classical biological control of weeds currently operates under the assumption that biological control agents are safe (i.e., low risk) if they do not directly attack nontarget species. However, recent studies indicate that even highly host-specific biological control agents can impact nontarget species through indirect effects. This finding has profound implications for biological control. To better understand the causes of these interactions and their implications, we evaluate recent case studies of indirect nontarget effects of biological control agents in the context of theoretical work in community ecology. We find that although particular indirect nontarget effects are extremely difficult to predict, all indirect nontarget effects of host specific biological control agents derive from the nature and strength of the interaction between the biological control agent and the pest. Additionally, recent theoretical work suggests that the degree of impact of a biological control agent on nontarget species is proportional to the agent’s abundance, which will be highest for moderately successful control agents. Therefore, the key to safeguarding against indirect nontarget effects of host-specific biological control agents is to ensure the biological control agents are not only host specific, but also efficacious. Biological control agents that greatly reduce their target species while remaining host-specific will reduce their own populations through density-dependent feedbacks that minimize risks to nontarget species.  相似文献   
63.
Centaurea diffusa is one of the most destructive invasive weeds in the western USA and allelopathy appears to contribute to its invasiveness ( Callaway & Aschehoug 2000 ). Here we identify a chemical from the root exudates of C. diffusa, 8‐hydroxyquinoline, not previously reported as a natural product, and find that it varies biogeographically in its natural concentration and its effect as an allelochemical. 8‐Hydroxyquinoline is at least three times more concentrated in C. diffusa‐invaded North American soils than in this weed's native Eurasian soils and has stronger phytotoxic effects on grass species from North America than on grass species from Eurasia. Furthermore, experimental communities built from North American plant species are far more susceptible to invasion by C. diffusa than communities built from Eurasian species, regardless of the biogeographical origin of the soil biota. Sterilization of North American soils suppressed C. diffusa more than sterilization of Eurasian soils, indicating that North American soil biota may also promote invasion by C. diffusa. Eurasian plants and soil microbes may have evolved natural resistance to 8‐hydroxyquinoline while North American plants have not, suggesting a remarkable potential for evolutionary compatibility and homeostasis among plants within natural communities and a mechanism by which exotic weeds destroy these communities.  相似文献   
64.
Allelopathy and exotic plant invasion   总被引:52,自引:0,他引:52  
The primary hypothesis for the astonishing success of many exotics as community invaders relative to their importance in their native communities is that they have escaped the natural enemies that control their population growth – the `natural enemies hypothesis'. However, the frequent failure of introduced biocontrols, weak consumer effects on the growth and reproduction of some invaders, and the lack of consistent strong top-down regulation in many natural ecological systems indicate that other mechanisms must be involved in the success of some exotic plants. One mechanism may be the release by the invader of chemical compounds that have harmful effects on the members of the recipient plant community (i.e., allelopathy). Here, we provide an abbreviated compilation of evidence for allelopathy in general, present a detailed case study for Centaurea diffusa, an invasive Eurasian forb in western North America, and review general evidence for allelopathic effects of invasive plants in native communities. The primary rationale for considering allelopathy as a mechanism for the success of invaders is based on two premises. First, invaders often establish virtual monocultures where diverse communities once flourished, a phenomenon unusual in natural communities. Second, allelopathy may be more important in recipient than in origin communities because the former are more likely to be naïve to the chemicals possessed by newly arrived species. Indeed, results from experiments on C. diffusa suggest that this invader produces chemicals that long-term and familiar Eurasian neighbors have adapted to, but that C. diffusa's new North American neighbors have not. A large number of early studies demonstrated strong potential allelopathic effects of exotic invasive plants; however, most of this work rests on controversial methodology. Nevertheless, during the last 15 years, methodological approaches have improved. Allelopathic effects have been tested on native species, allelochemicals have been tested in varying resource conditions, models have been used to estimate comparisons of resource and allelopathic effects, and experimental techniques have been used to ameliorate chemical effects. We do not recommend allelopathy as a `unifying theory' for plant interactions, nor do we espouse the view that allelopathy is the dominant way that plants interact, but we argue that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species. Ecologists should consider the possibility that resource and non-resource mechanisms may work simultaneously, but vary in their relative importance depending on the ecological context in which they are studied. One such context might be exotic plant invasion.  相似文献   
65.
66.

Aim

We studied the novel weapons hypothesis in the context of the broadly distributed tree species Eucalyptus globulus. We evaluated the hypothesis that this Australian species would produce stronger inhibitory effects on species from its non‐native range than on species from its native range.

Location

We worked in four countries where this species is exotic (U.S.A., Chile, India, Portugal) and one country where it is native (Australia).

Time period

2009–2012.

Major taxa studied

Plants.

Methods

We compared species composition, richness and height of plant communities in 20 paired plots underneath E. globulus individuals and open areas in two sites within its native range and each non‐native region. We also compared effects of litter leachates of E. globulus on root growth of seedlings in species from Australia, Chile, the U.S.A. and India.

Results

In all sites and countries, the plant community under E. globulus canopies had lower species richness than did the plant community in open areas. However, the reduction was much greater in the non‐native ranges: species richness declined by an average of 51% in the eight non‐native sites versus 8% in the two native Australian sites. The root growth of 15 out of 21 species from the non‐native range were highly suppressed by E. globulus litter leachates, whereas the effect of litter leachate varied from facilitation to suppression for six species native to Australia. The mean reduction in root growth for Australian plants was significantly lower than for plants from the U.S.A., Chile and India.

Main conclusions

Our results show biogeographical differences in the impact of an exotic species on understorey plant communities. Consistent with the novel weapons hypothesis, our findings suggest that different adaptations of species from the native and non‐native ranges to biochemical compounds produced by an exotic species may play a role in these biogeographical differences.  相似文献   
67.
Impact of a parasitic plant on the zonation of two salt marsh perennials   总被引:6,自引:0,他引:6  
Animal, fungal, and bacterial consumers can have dramatic effects on the structure of plant communities, often by consuming dominant competitors and indirectly increasing the abundance of inferior competitors. We investigated the role of a consumer plant, the parasite Cuscuta salina, on plant zonation in a western salt marsh. Cuscuta had a strong host species preference in experiments, disproportionally infecting Salicornia virginica, the dominant competitor in most of the marsh. In plots with Cuscuta, which infected 18% of our study area over a 3-year period, Salicornia cover decreased and the cover of Arthrocnemum increased substantially in comparison to plots without Cuscuta. Deep in the Salicornia zone, the cover of Arthrocnemum in Cuscuta-infected plots increased by 558% in 1 year relative to uninfected plots. At the ecotone, the cover of Arthrocnemum in Cuscuta-infected plots increased by only 41% during the same time interval. These data suggest that the relative benefit of a consumer to a less-preferred, subordinate competitor may be strongest where competition is the most asymmetrical as predicted by recent theoretical models. By weakening the competitive dominant, which in the absence of the parasite can create virtual monocultures, Cuscuta enhanced community diversity and altered the ecotone between Salicornia and Arthrocnemum. Cuscuta patches were highly dynamic at the ecotone between Salicornia and Arthrocnemum, and thus the changes we measured in our sample plots were likely to be representative of large portions of the marsh. Our findings emphasize the importance of trophic interactions in salt marsh structure and zonation. Received: 23 April 1997 / Accepted: 10 October 1997  相似文献   
68.
Yee  KK; Costanzo  RM 《Chemical senses》1998,23(5):513-519
Following recovery from olfactory nerve transection, animals regain their ability to discriminate between odors. Odor discrimination is restored after new neurons establish connections with the olfactory bulb. However, it is not known if the new connections alter odor quality perception. To address this question, 20 adult hamsters were first trained to discriminate between cinnamon and strawberry odors. After reaching criterion (> or = 90% correct response), half of the animals received a bilateral nerve transection (BTX) and half a surgical sham procedure. Animals were not tested again until day 40, a point in recovery when connections are re-established with the bulb. When BTX animals were tested without food reinforcement, they could not perform the odor discrimination task. Sham animals, however, could discriminate, demonstrating that the behavioral response had not been extinguished during the 40 day period. When reinforcement was resumed, BTX animals were able to discriminate between cinnamon and strawberry after four test sessions. In addition, their ability to discriminate between these two familiar odors was no different than that of BTX and sham animals tested with two novel odors, baby powder and coffee. These findings suggest that, after recovery from nerve transection, there are alterations in sensory perception and that restoration of odor quality discrimination requires that the animal must again learn to associate individual odor sensations with a behavioral response.   相似文献   
69.
Climate change impacts, such as accelerated sea‐level rise, will affect stress gradients, yet impacts on competition/stress tolerance trade‐offs and shifts in distributions are unclear. Ecosystems with strong stress gradients, such as estuaries, allow for space‐for‐time substitutions of stress factors and can give insight into future climate‐related shifts in both resource and nonresource stresses. We tested the stress gradient hypothesis and examined the effect of increased inundation stress and biotic interactions on growth and survival of two congeneric wetland sedges, Schoenoplectus acutus and Schoenoplectus americanus. We simulated sea‐level rise across existing marsh elevations and those not currently found to reflect potential future sea‐level rise conditions in two tidal wetlands differing in salinity. Plants were grown individually and together at five tidal elevations, the lowest simulating an 80‐cm increase in sea level, and harvested to assess differences in biomass after one growing season. Inundation time, salinity, sulfides, and redox potential were measured concurrently. As predicted, increasing inundation reduced biomass of the species commonly found at higher marsh elevations, with little effect on the species found along channel margins. The presence of neighbors reduced total biomass of both species, particularly at the highest elevation; facilitation did not occur at any elevation. Contrary to predictions, we documented the competitive superiority of the stress tolerator under increased inundation, which was not predicted by the stress gradient hypothesis. Multifactor manipulation experiments addressing plant response to accelerated climate change are integral to creating a more realistic, valuable, and needed assessment of potential ecosystem response. Our results point to the important and unpredicted synergies between physical stressors, which are predicted to increase in intensity with climate change, and competitive forces on biomass as stresses increase.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号